

Using CLUSTERIX - National CLUSTER of LInuX Systems:

Roman Wyrzykowski*, Norbert Meyer**

*Czestochowa University of Technology **Poznań Supercomputing and Networking Center

- CLUSTERIX status, goals and architecture
- Pilot installation & network infrastructure
- CLUSTERIX middleware
 - Technologies and architecture
 - Dymamic cluster attachment
 - User account management
- Pilot applications
- An example of running applications in CLUSTERIX
- Final remarks

Current Status

- project started on January 2004
- the entire project lasts 32 months with two stages:
- research and development finished in Sept. 2005
- deployment starting in Oct. 2005, till June 2006
- 12 members Polish supercomputing centers and MANs
- total budget 1,2 milion Euros
- 53 % funded by the consortium members, and 47 % by the Polish Ministry of Science and Information Society Technologies

Partners

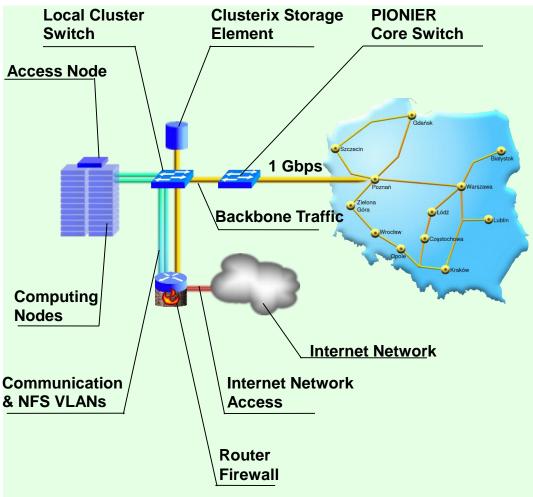
- Częstochowa University of Technology (coordinator)
- Poznań Supercomputing and Networking Center (PNSC)
- Academic Computing Center CYFRONET AGH, Kraków
- Academic Computing Center in Gdańsk (TASK)
- Wrocław Supercomputing and Networking Center (WCSS)
- Technical University of Białystok
- Technical University of Łódź
- Marie Curie-Skłodowska University in Lublin
- Warsaw University of Technology
- Technical University of Szczecin
- Opole University
- University of Zielona Góra

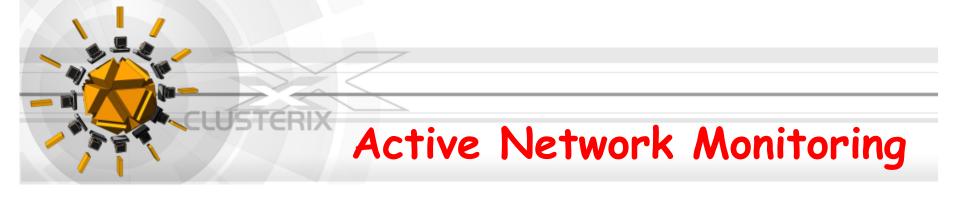
CLUSTERIX Goals

- to develop mechanisms and tools that allow the deployment of a production Grid environment
- basic infrastructure consists of local LINUX clusters with 64bit architecture located in geographically distant independent centers connected by the fast backbone provided by the Polish Optical Network PIONIER
- existing and newly built LINUX clusters are dynamically connected to the basic infrastructure
- as a result, a distributed PC-cluster is built, with a dynamically changing size, fully operational and integrated with services delivered as the outcome of other projects

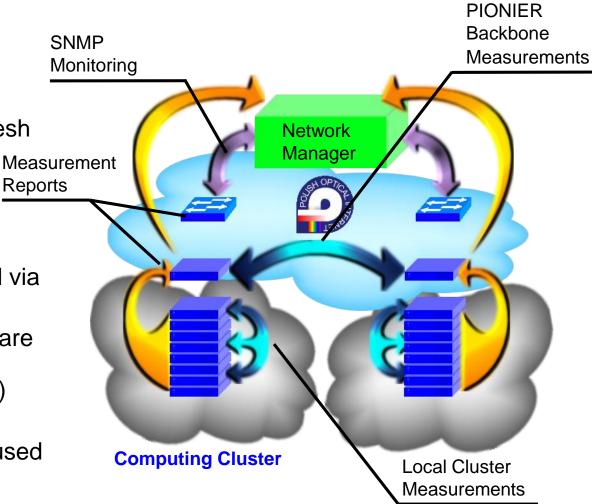
- development of software capable of cluster management with dynamically changing configuration (nodes, users and available services); one of the most important factors is reducing the management overhead
- taking into consideration local policies of infrastructure administration and management, within independent domains
- new quality of services and applications based on the IPv6 protocols
- integration and making use of the existing services delivered as the outcome of other projects (data warehouse, remote visualization, ...)
- integrated end-user/administrator interface
- providing required security in a heterogeneous distributed system
- production-class Grid infrastructure
- the resulting system tested on a set of pilot distributed applications developed as a part of the project

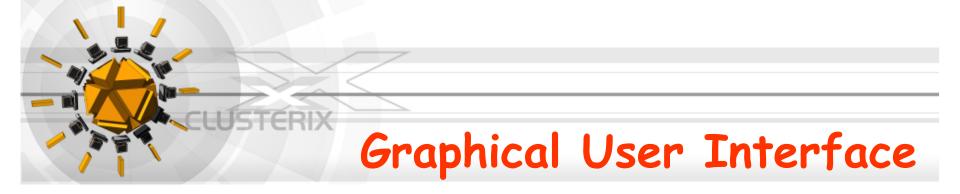
GLOBUS Computational atch System Nodes **FS Server** Other Services... DYN. CLUSTER 1 Access Node **DYN. CLUSTER 2** USERS DYN. CLUSTER N Local Switch Storage Elemer 10.0.X.X HTTP & System Firewall HTTPS 150.100.X.X (router) erve Data Store SSH Server Access Portal 10.1.X.X INTERNET 150.254.X.X Switch ADMINISTRATORS Entrypoint BACKBONE NETWORK Management Portal MANAGEMENT VLAN

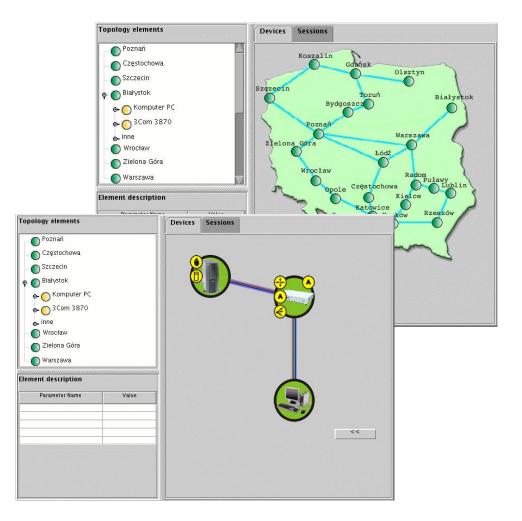



Pilot Installation

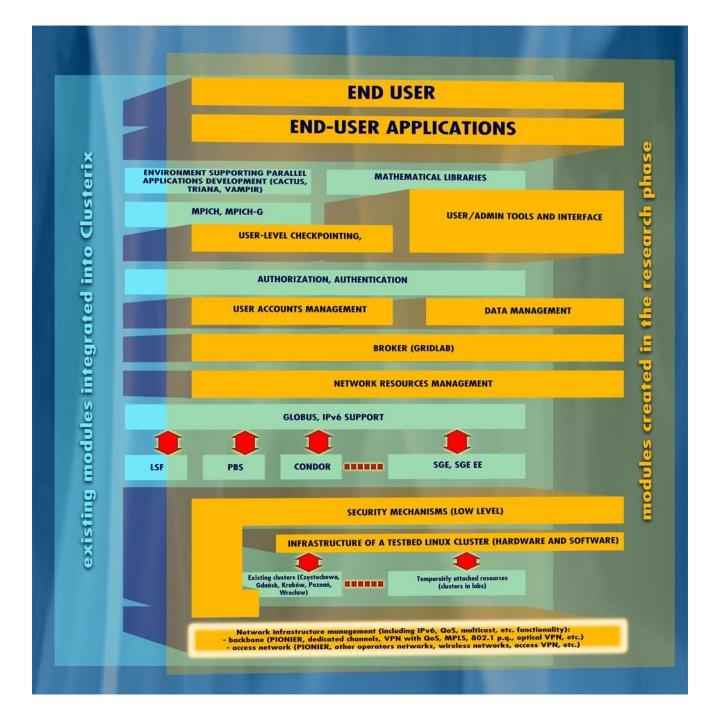
- 12 local clusters with
 250+ IA-64 in the core
- Linux Debian, kernel
 2.6.x
- PIONIER Network: 3000+ km of fibers with 10Gbps DWDM technology
- 2 VLANs with dedicated 1Gbps bandwidth for the CLUSTERIX network


CLUSTERIX Network Architecture


- Communication to all cluster is passed through router/firewall
- Routing based on IPv6 protocol, with IPv4 for back compatibility feature
- Application and Clusterix middleware are adjusted to IPv6 usage
- Two 1 Gbps VLANs are used to improve management of network traffic in local clusters
 - Communication VLAN is dedicated to support nodes messages exchange
 - NFS VLAN is dedicated to support file transfer

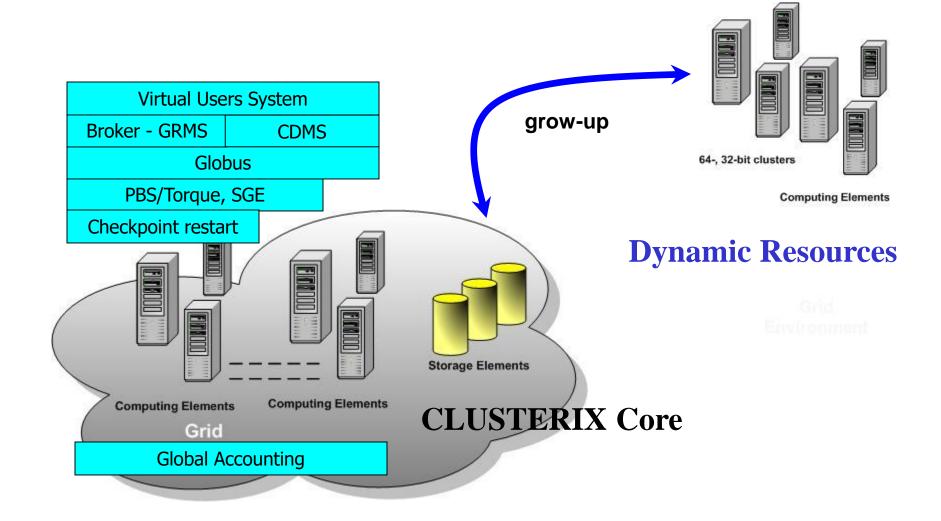


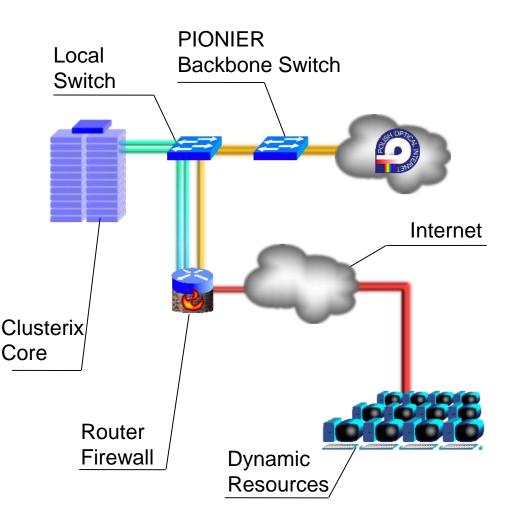
- Measurement
 architecture
 - Distributed 2-level measurement agent mesh (backbone/cluster)
 - Centralized control manager (multiple redundant instances)
 - Switches are monitored via SNMP
 - Measurements reports are stored by manager (forwarded to database)
 - IPv6 protocol and addressing schema is used for measurement

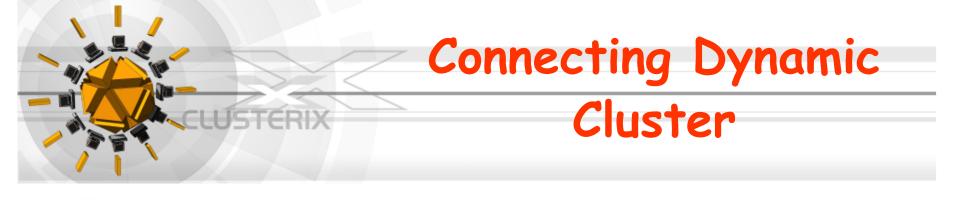


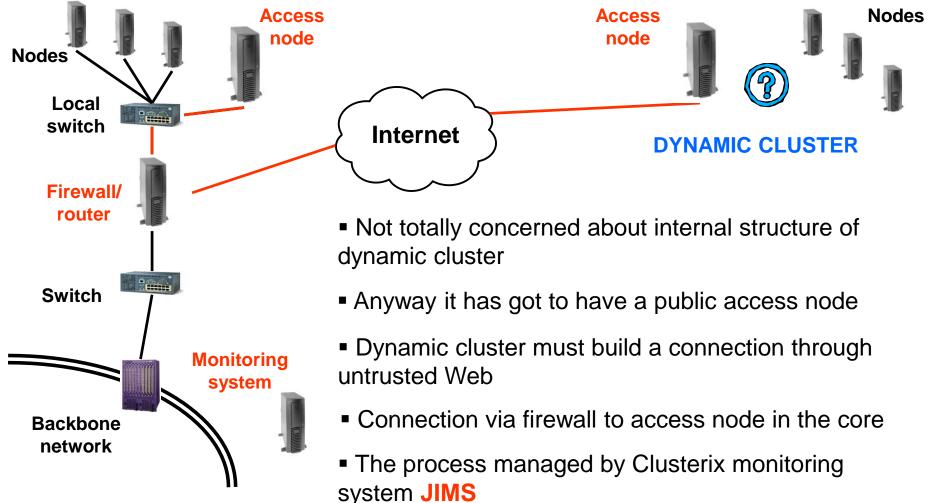
- GUI
 - Provides view of network status
 - Gives a look at statistics
 - Simplifies network troubleshooting
 - Allows to configure measurement sessions
 - Useful for topology browsing

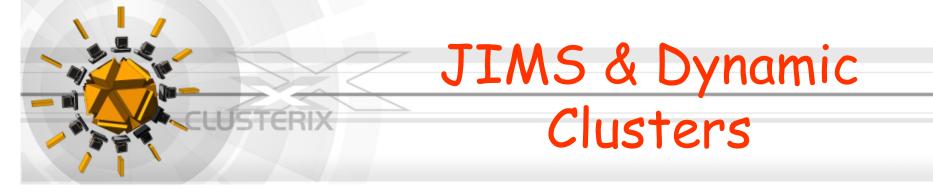
Middleware in **CLUSTERIX**


- the software developed is based on Globus Toolkit 2.4 plus web services - with Globus 2.4 available in Globus 3.2 distribution
 - this makes the created software easier to reuse
 - allows for interoperability with other Grid systems on the service level
- Open Source technology, including LINUX (Debian, kernel 2.6.x) and batch systems (Open PBS/Torque, SGE)
 - open software is easier to integrate with existing and new products
 - allows anybody to access the project source code, modify it and publish the changes
 - makes the software more reliable and secure
- existing software will be used extensively in the CLUSTERIX project, e.g., GridLab broker, Virtual User Account (SGIgrid)


- Dynamic (external) clusters can be easily attached to CLUSTERIX core in order to:
 - Increase computing power with new clusters
 - Utilize external clusters during nights or nonactive periods
 - Make CLUSTERIX infrastructure scalable

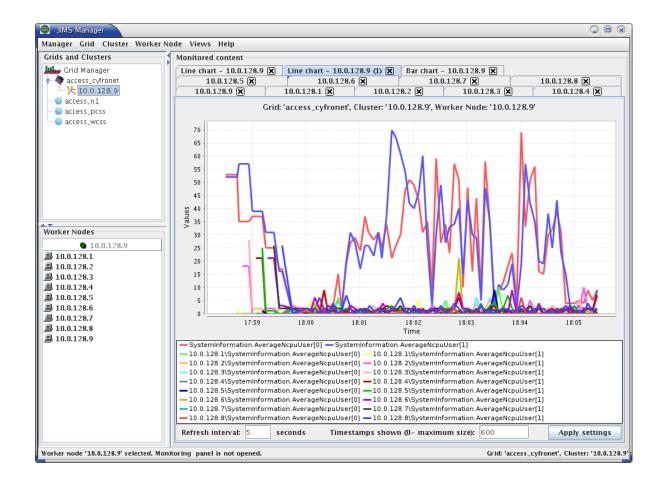

Integrating Dynamic Clusters

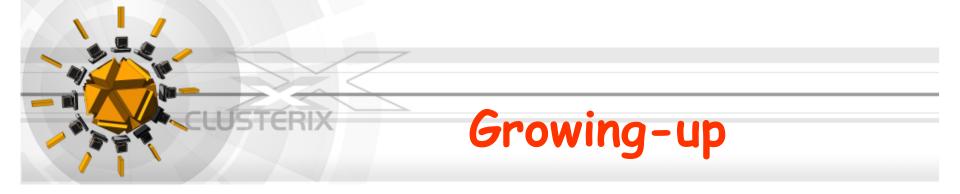




- Requirements needs to be checked against new clusters
 - Installed software
 - SSL certificates
- Communication through router/firewall
- Monitoring System will automatically discover new resources
- New clusters serve computing power on regular basis

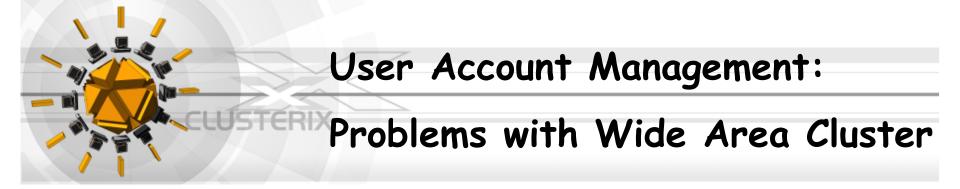
- JIMS the JMX-based Infrastructure Monitoring System
- Additional module implementing functionality necessary for supporting Dynamic Clusters
- Support for Dynamic Cluster installation through Web Service, with secure transmission and authentication (SSL/GSI)
- Support for Broker notification about following events:
 - Dynamic Cluster added
 - Dynamic Cluster removed
- System managed through JIMS Manager (GUI), by administrator or automatically, using dedicated service in Dynamic Cluster


JIMS Dynamic Cluster Module


Base JIMS Agent User Modules Interoperability SysInfo SOAPC HTTP **SNMP** RMIC JMXG DynCl WND MLet StoMe Discovery..... OSC DClient GEMon DResp DMon ТΜ GDS Legend: HTTP - HTTP Server **DClient** - Discovery Client RMIC DMon - Discovery Monitor - RMI Connector GDS MLet - MLet Service - Global Discovery Service OSC - System Information - Operating System SysInfo SNMP - SNMP Proxy Common - Discovery Responder DynCl - Dynamic Cluster Module DResp - Storage Metrics SOAPC - SOAP Connector StoMe JMXG GEMon - Grid Engine Monitoring - JMX Gateway WND - Worker Node ТΜ - JMX Timer Delegate

JIMS Management Application (1)

Manager Grid Cluster Work					
Grids and Clusters	Monitored content				
Grid Manager	10.0.128.3 🗙 10.0.128.4 🕽	10.0.128.3 X 10.0.128.4 X 10.0.128.5 X 10.0.128.6 X 10.0.128.7 X 10.0.128.8 X			
👇 🔷 access_cyfronet	10.0.128.9 🗙 10.0.128.1 🕱 10.0.128.2 🕱				
- 🌟 10.0.128.9	C 111	28.00 10 1 1 1 1 1 0 0 1 28.00			
— 🥥 access_n1	Grid: 'a	Grid: 'access_cyfronet', Cluster: '10.0.128.9', Worker Node: '10.0.128.9'			
— 🥥 access_pcss	MBeans: 17, domains: 6 org.crossgrid.wp3.monitoring.jims.mbeans.Linux.SystemInformation				
🗆 🥥 access_wcss	A Connector				
	- S RMIConnectorServer	Name	Access Value		
	- SoapConnectorServer		RO fpu vme de pse tsc msr pae mce c	x8 apic se	
	DefaultDomain	User	R0 6308461		
		System	R0 4020039		
		TimerPeriod	RW 2		
	- S DiscoveryClient	Mem	RO 169		
	- S DiscoveryMonitor	Maxmem	RO 1011		
	- S DiscoveryResponder	Memsh	R0 -1		
	- 🗞 HTTPServer	Membuf	RO 96	=	
	MXGateway	Memch	RO 486		
Worker Nodes	Timer 📃 📃 🗧	Maxswp	RO 2596		
	— 🕒 🦳 🔍 WNDelegate	Swp	RO 2589		
• 10.0.128.9	💑 DynamicLoading	 FileSystemStatistics[] FileSystemStatisticsExt[] 	RO []		
≝ 10.0.128.1	MLetService	 IntesystemstatisticsExt[] Iomap 	R0 [] R0 0000000-0009f7ff : System RAM	4	
■ 10.0.128. 2	🔥 Information	L1m	R0 1.7	<u> </u>	
■ 10.0.128.3	OSCommon 🌭 🔍	L5m	RO 1.01		
📕 10.0.128.4	MImplementation	L15m	R0 0.51		
3 10.0.128.5	📙 🦳 🗞 MBeanServerDelegate	Uptime	R0 1.5130961E7		
■ 10.0.128.6	🗸 Monitorina	Itime	R0 2181735.2		
■ 10.0.128.7	📙 🔍 GEMonitoring	Cpuinf	RO processor: 0		
10.0.128.8	 NetworkMetrics 	Model	RO Intel(R) Xeon(TM) CPU 2.66GHz		
10.0.128.9	- StorageMetrics	Ncpus	RO 2		
	Storagemetrics SystemInformation	Ndisks	R0 1		
	Systeminiormation	Ver	RO Linux version 2.6.8-2-686-smp (c	dilinger@to	
		Nproc	R0 287		
		Rproc	RO 2		
		Cline	RO root=/dev/hda1 ro		
		ldle	RO 3013187565	J_	
		MBean content filter:			
	Expand all Collapse all	Attributes Operations	O Notifications O Constructors	Refresh data	
	MBean 'SystemInformation' selecte	d. Attributes read at: 17:48:40			

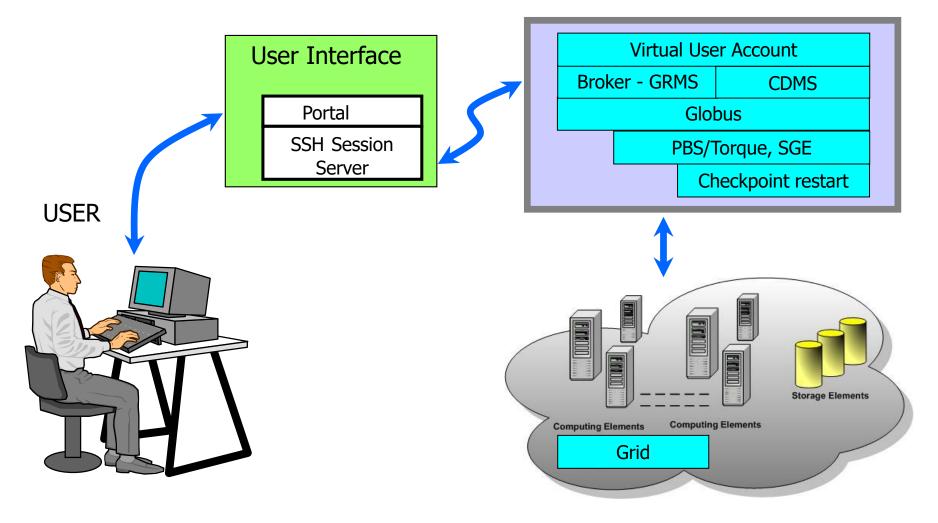

JIMS Management Application (2)

- core installation:
 - 250+ Itanium2 CPUs distributed among 12 sites located across Poland
- ability to connect dynamic clusters from anywhere (clusters from campuses and universities)

- peak installation with 800+ CPUs (4,5 Tflops) - not automatic procedure yet

Local cluster \neq wide area cluster !!!

The main (from our perspective) problems are:


- User accounts problems
- Global resource accounting
- Queuing system incompatibility
- File transfer problems
- ••••

The integration of the person into the system in a seamless and comfortable way is paramount to obtain maximal benefit.

Task execution in

CLUSTERIX

User

To be able to submit jobs to remote resource

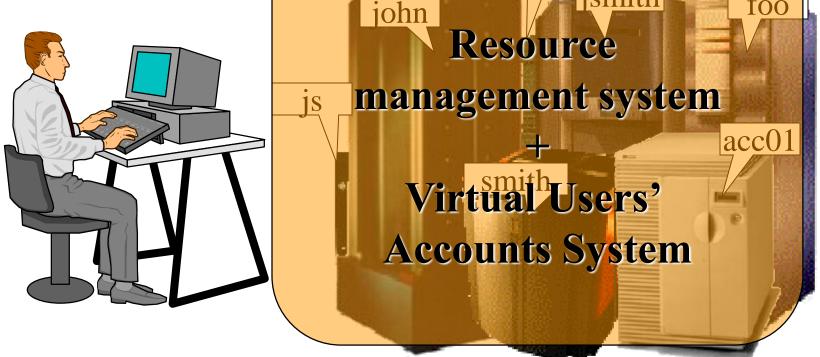
To have summary information about resources used

Admin

To have full knowledge of who is using resources

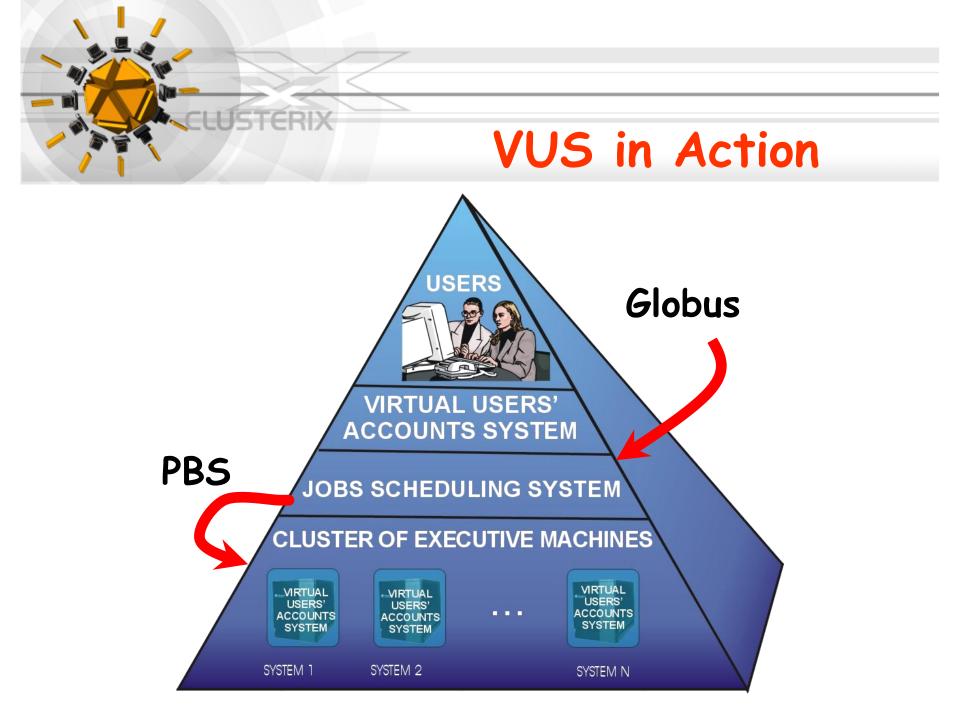
VO (Virtual Organization) manager

To have summary information about its users


Site manager

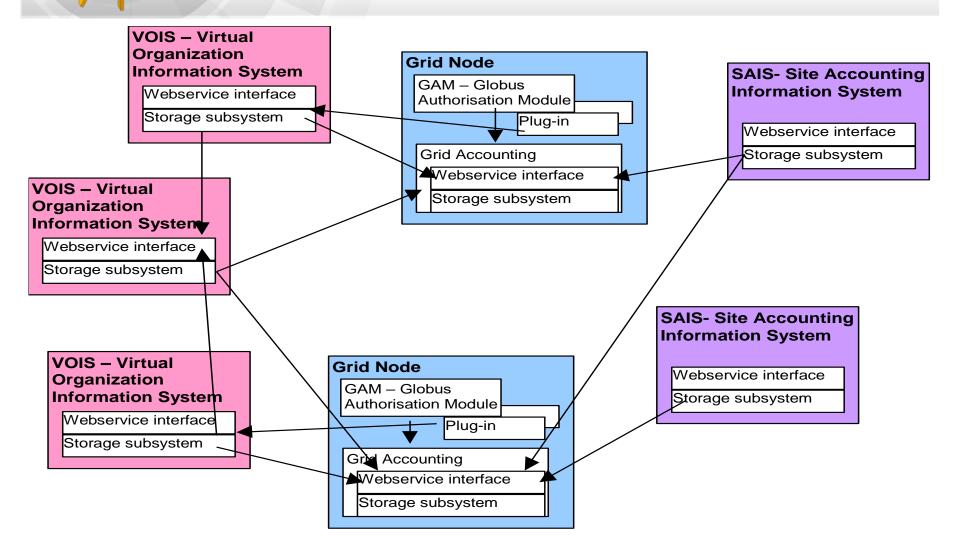
To have summary information about its machines

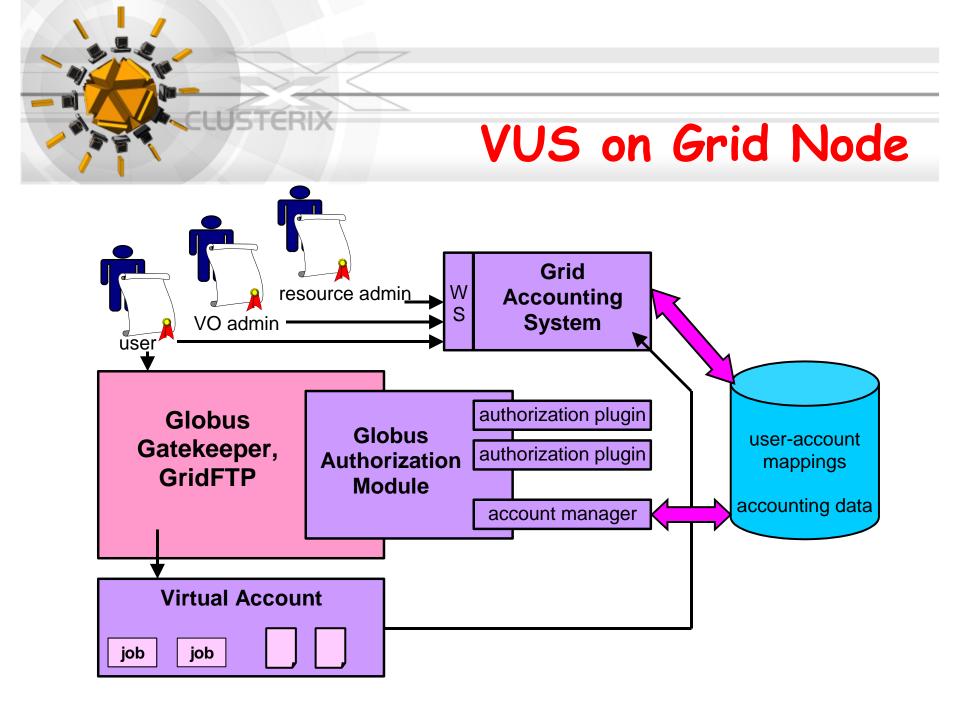
Requirements (cont.)

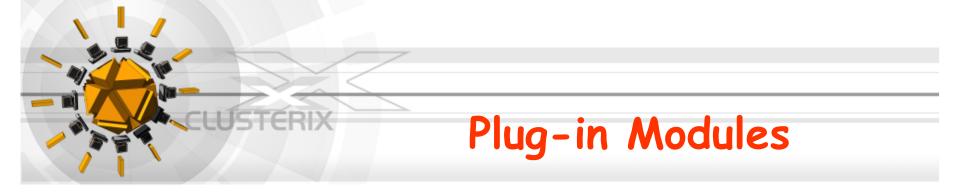

- Enabling the user to access all required Grid resources regardless of physical location
 - trivial in testbeds
 - hard to reach in production Grid environment
- Taking into consideration all local (domain) policies regarding security and resource management
- Decreasing the time overheads of user account management
- Enabling distributed accounting, i.e. retrieval of information about resource usage in a distributed environment, with many different and independent domain policies
- Maintaining an adequate security level

Virtual User System

- VUS is an extension of the system that runs users' jobs to allow running jobs without having an user account on a node.
- The user is authenticated, authorized and then logged on a 'virtual' account (one user per one account at the time).
- The history of user-account mapping is stored, so that accounting and tracking user activities is possible.


- Every user has to be added to the grid-mapfile
 - grid-mapfile tends to be very long
- grid-mapfile includes user and not VO
 - Frequent changes to grid-mapfile
- It is recommended that every user should have his/her own account
 - User needs to contact many admins
- There is no accounting support

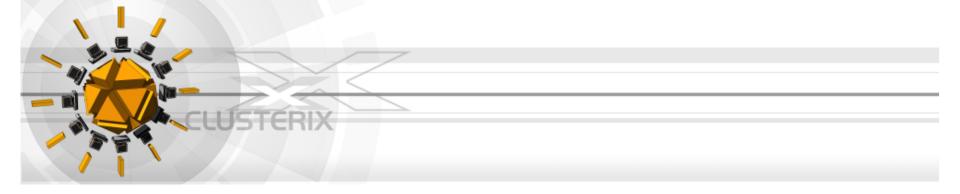

VUS in Globus


- Globus authentication library is replaced
 impacts gatekeeper, gridftpserver and MDS
- Account service to keep full accounting information
- VO server to keep user list and VO summary accounting
- Each VO can have its own pool of accounts (with different permisions)
- Site server to keep machine list and site summary accounting

Architecture of the

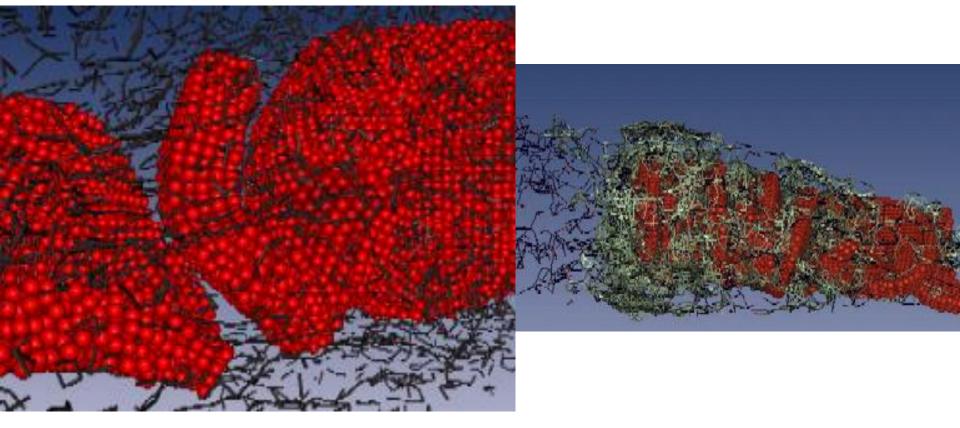


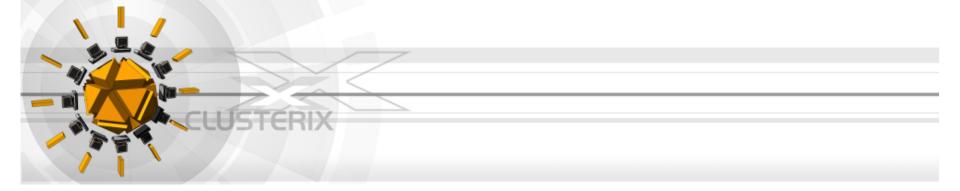
- Accept all users listed in the grid-mapfile
 backwards compatibility
- Accept all users that are members of VOs
- Ban users assigned to local ban list
- Ask Remote Authorisation System to accept or reject request
- Accept all users with certificate name matching a certain pattern (/C=PL/O=Grid/O=PSNC/*)



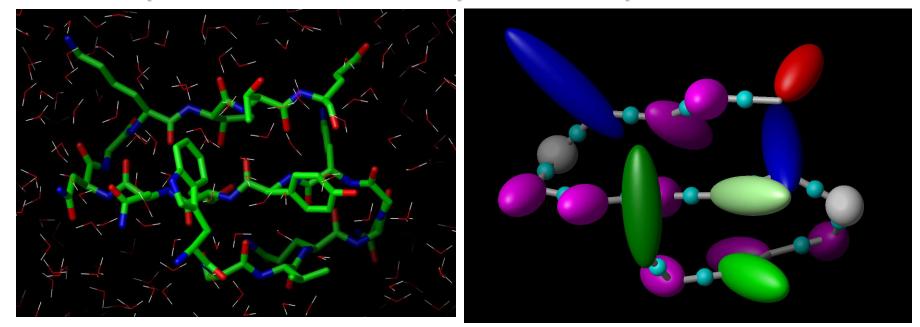
- Allows to introduce the production Grid
 - Dynamic changeable environment
 - First step towards Grid economy
- Keeps local and global policies
- Decreases management (administration overheads)
- Stores standard and non-standard resource usage information
- Supports different Grid players : user, resource owner, organization manager

- selected applications are developed for experimental verification of the project assumptions and results, as well as to achieve real application results
- running both HTC applications, as well as large-scale distributed applications that require parallel use of one or more local clusters (meta-applications)
- two directions:
 - adaptation of existing applications for Grids
 - development of new applications

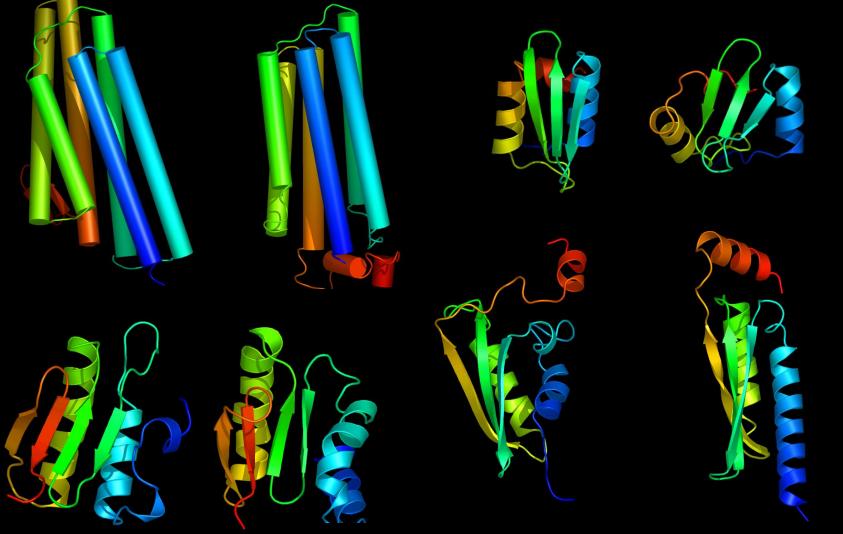

SELECTED SCIENTIFIC APPLICATIONS (out of ~30)


Large scale simulations of blood flow in micro-capillaries (discrete particle model)

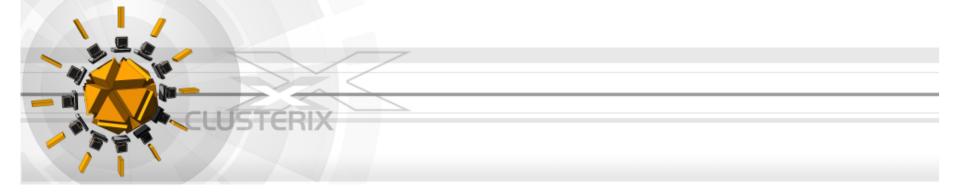
W.Dzwinel, K.Boryczko AGH, Institute of Computer Science



(5×10⁶ particles, 16 processors used)

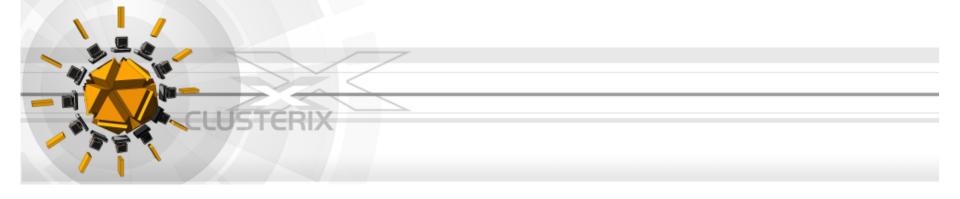

Prediction of Protein Structure

Adam Liwo, Cezary Czaplewski, Stanisław Ołdziej Department of Chemistry, University of Gdansk

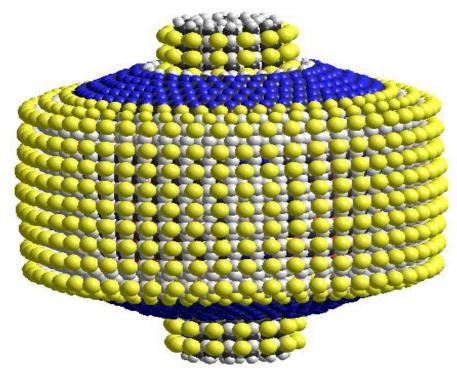


Selected UNRES/CSA results from 6th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction

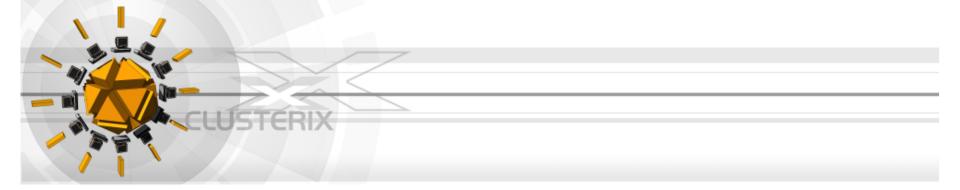
December 4-8, 2004



left - experimental structure, right - predicted structure

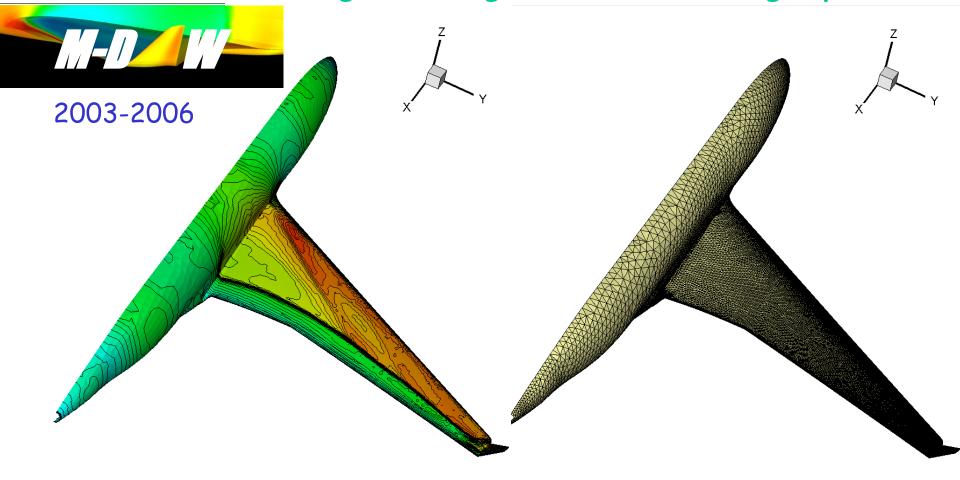


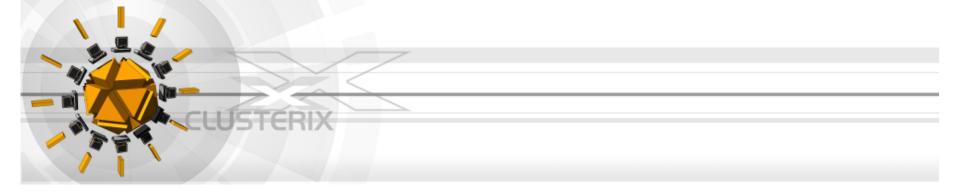
Nano-Engineering


Michał Wróbel, Aleksander Herman TASK & Gdańsk University of Technology

XMD testing target: a planetary gear device containing 8297 atoms (C, F, H, N, O, P, S and Si) designed by K. E. Drexler and R. Merkle

• XMD an Open Source computer package for performing molecular dynamics simulations of nano-devices and systems.


Flow simulations in Aeronautics in-house HADRON code

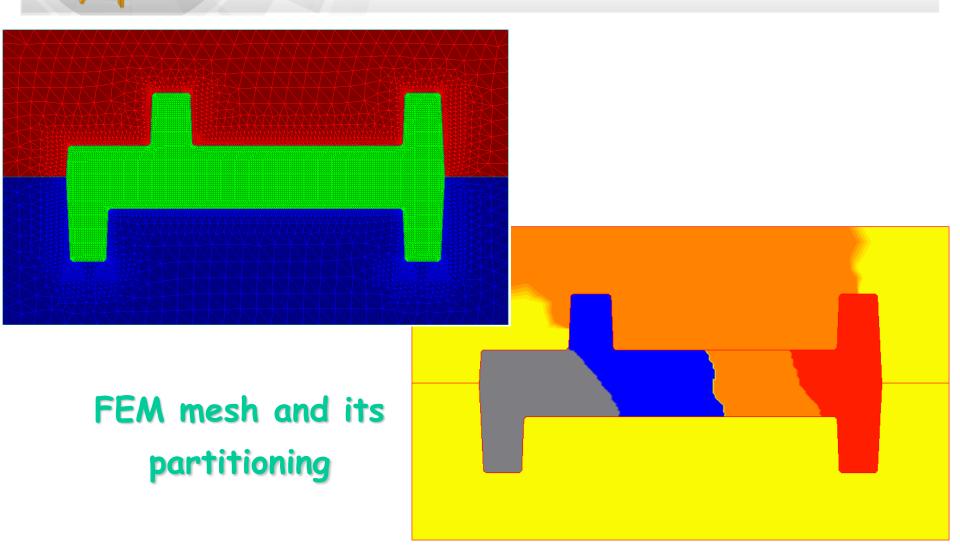

Jacek Rokicki Warsaw University of Technology

Large 3D computational problems

Modeling and design of advanced Wing-tip devices

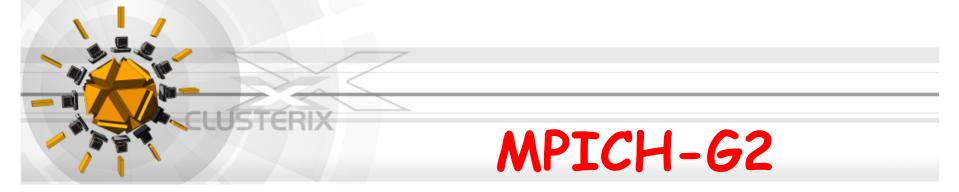
NuscaS

Czestochowa University of Technology


Tomasz Olas

Application areas:

different thermo-mechanic phenomena:

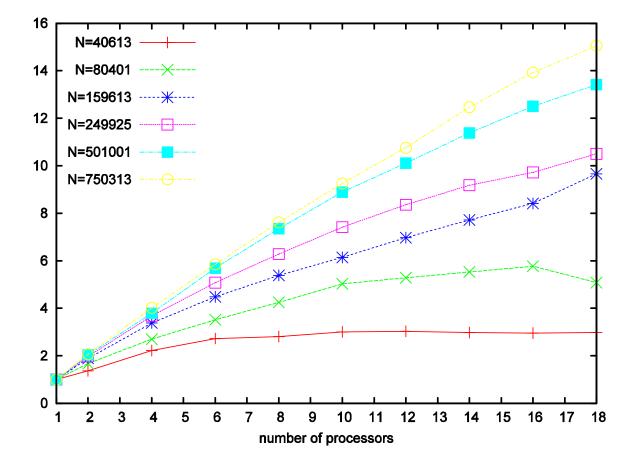

heat transfer, solidification, stress in thermo-elastic states, stress in thermo-elasto-plastic states, estimation of hot-tearing in casting, mechanical interactions between bodies, hot-tearing, damage, etc.

Finite Element Modeling of Solidification

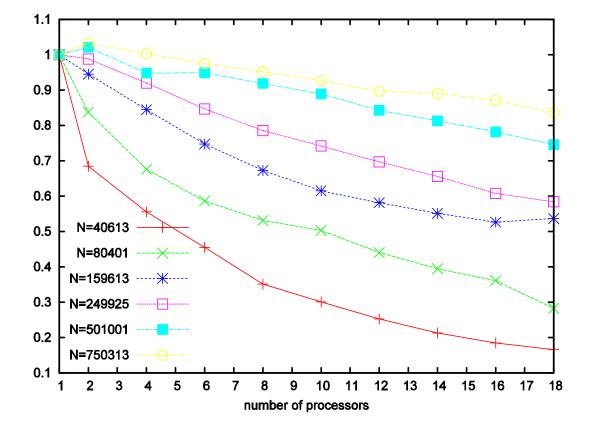
Different Scenarios of using Grid Resources

- Grid as the resource pool an appropriate computational resource (local cluster) is found via resource management system, and the sequential application is started there
- Parallel execution on grid resources (meta-computing application):
 - Single parallel application being run on geographically remote resources
 - Grid-aware parallel application the problem is decomposed taking into account Grid architecture

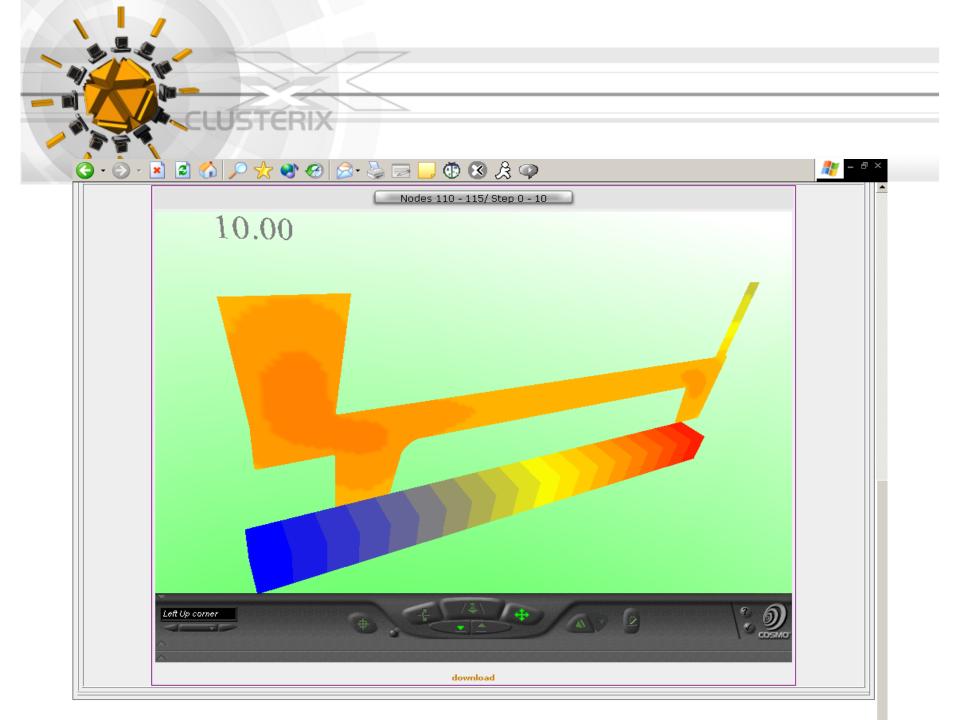
- The MPICH-G2 tool is used as a grid-enabled implementation of the MPI standard (version 1.1)
- It is based on the Globus Toolkit used for such purposes as authentification, authorization, process creation, process control, ...
- MPICH-G2 allows to couple multiple machines, potentially of different architectures, to run MPI applications
- To improve performance, it is possible to use other MPICH-based vendor implementations of MPI in local clusters (e.g. MPICH-GM)



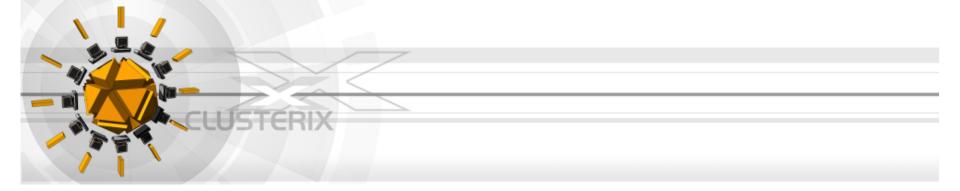
Hierarchical architecture of CLUSTERIX


	latency	bandwitch
local (MPI)	104 μs	752 $\frac{Mb}{s}$
local (MPICH-G2)	124 μs	745 $\frac{Mb}{s}$
global (MPICH-G2)	10 <i>ms</i>	33 $\frac{Mb}{s}$

- It is not a trivial issue to adopt an application for its efficient execution in the CLUSTERIX environment
- Communicator construction in MPICH-G2 can be used to represent hierarchical structures of heterogenous systems, allowing applications for adaptation of their behaviour to such structures



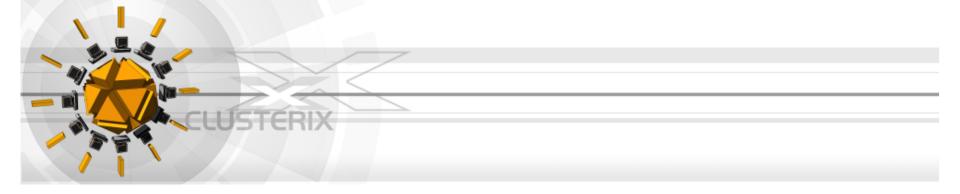
CLUSTERIX	


🔇 • 🕤 · 💌 🖻 🏠 🔎 🏡	? 😢 🥪 🌭 😣 🕑	🛯 La 🕥	🥂 – 8 ×
Witamy Administracja ClusterIX			Wylogowanie Witaj, Tomasz Kuczynski
Application Portlet 2 Application Portlet 1			
1 ? 4		on Portlet 1	
Ses	sions	4	pplications
	Active Session	1 (switch to normal view)	
Session ID kuczynski_rage1.man.poznar	n.pl_1099987516 💌		
	set	session	
Application Heat transfer application der	no 🔽		
		pplication	
	Application	input params	
	1 Time	step (real value)	
	10 Numb	per of steps (integer value)	
	1 Read	dataset every X steps (integer value)	
		end	
Output presentation: Standard HTML pres	entation 🔽		
		esentation	
	Heat Trans	fer Application	
	Message: Please s	et computing parameters.	

- 6					A 11 -			~			
-) •	- 💌 🛃) 🏠 🔎 🚽	7 🕙 🧐	🔁 • 🍣 I	2 📙 🖫	× & «	2			
						Applicatio	n input param	s			
					Ru	In application	▼ Co	mmand			
							send				
utp	resen	ntation: Ex	tended HTML pre	esentation		-					
						set p	resentation				
					Cc)utput presei	ntation param	eters			
			870		Start node	number (for r	ange details ple	ase see "Standard HTM	'ML presentation", defaul	t 0)	
			-								
			875		End node r	number (for ra	inge details plea	se see "Standard HTM	1L presentation", default	0)	
			875 temperature ch	nanges in time	_		inge details plea	ase see "Standard HTM	1L presentation", default	0)	
				nanges in time	_		inge details plea	ase see "Standard HTM	1L presentation", default	0)	
				nanges in time	_			ase see "Standard HTM	1L presentation", default	0)	
itep	Tim	Node 8 ne x: 0.085 y: 0.0	70 Node 871	Node 872	Chart type	Node:	set s 870 - 875 Node 875	Temper	IL presentation", default rature changes ws changes of temperature	s in time	
itep 0	Tim	ne x: 0.085	70 Node 871	Node 872 4 x: 0.0880339	Chart type	Node 874 x: 0.0894224	set s 870 - 875 Node 875 x: 0.091392	Tempei	rature changes	s in time	
-	o	me x: 0.085 y: 0.0	70 Node 871 041 x: 0.085909 5 y: 0.052151 1000	Node 872 4 x: 0.0880339 y: 0.0521417	Chart type	Node: Node 874 x: 0.0894224 y: 0.05	set s 870 - 875 Node 875 x: 0.091392 y: 0.0564499	Tempei	rature changes	s in time	
0	o	ne x: 0.085 y: 0.0	70 1041 x: 0.085909 y: 0.052151 1000 952.393	Node 872 4 x: 0.0880339 1 y: 0.0521417 1000	 Chart type Node 873 x: 0.0872211 y: 0.05 1000 	Node 874 x: 0.0894224 y: 0.05	set 8 870 - 875 Node 875 x: 0.091392 y: 0.0564499 1000	Temper This chart show	rature changes	s in time	
0 1 2 3	0 1 2 3	ne x: 0.085 y: 0.0 1000 948.711 917.795 892.88	Node 871 0041 x: 0.085909 y: 0.052151 1000 952.393 921.919 896.955 896.955	Node 872 4 x: 0.0880339 1 y: 0.0521417 1000 959.769 929.63 904.523	 Chart type X. Node 873 x: 0.0872211 y: 0.05 1000 962.151 932.534 907.463 	Node 874 x: 0.0894224 y: 0.05 1000 955.172 925.231 900.285	set Node 875 x: 0.091392 y: 0.0564499 1000 957.066 927.613 902.725	Temper This chart show	rature changes	s in time	
0 1 2 3 4	0 1 2 3 4	ne x: 0.085 y: 0.0 948.711 917.795 892.88 870.953	Node 871 041 x: 0.085909 051 x: 0.085909 1000 952.393 921.919 896.955 874.907	Node 872 4 x: 0.0880339 1 y: 0.0521417 1000 959.769 929.63 904.523 882.263	 Chart type Node 873 x: 0.0872211 y: 0.05 1000 962.151 932.534 907.463 885.139 	Node 874 x: 0.0894224 y: 0.05 1000 955.172 925.231 900.285 878.156	set Node 875 x: 0.091392 y: 0.0564499 1000 957.066 927.613 902.725 880.555	Temper This chart show	rature changes	s in time	
0 1 2 3 4 5	0 1 2 3 4 5	ne x: 0.085 y: 0.0 948.711 917.795 892.88 870.953 850.918	Node 871 041 x: 0.085909 y: 0.052151 1000 952.393 921.919 896.955 874.907 854.742 854.742	Node 872 4 x: 0.0880339 1 y: 0.0521417 1000 959.769 929.63 904.523 882.263 882.263 861.875	 Chart type Node 873 Node 873 0.0872211 9.0.05 1000 962.151 932.534 907.463 885.139 864.665 	Node 874 x: 0.0894224 y: 0.05 1000 955.172 925.231 900.285 878.156 857.892	set Node 875 x: 0.091392 y: 0.0564499 1000 957.066 927.613 902.725 880.555 860.224	Tempel This chart show	rature changes	s in time	
0 1 2 3 4 5 6	0 1 2 3 4	ne x: 0.085 y: 0.0 948.711 917.795 892.88 870.953	70 Node 871 0041 x: 0.085909 y: 0.052151 1000 952.393 921.919 896.955 874.907 854.742 835.937	Node 872 4 x: 0.0880339 1 y: 0.0521417 1000 959.769 929.63 904.523 882.263	 Chart type Node 873 x: 0.0872211 y: 0.05 1000 962.151 932.534 907.463 885.139 	Node 874 x: 0.0894224 y: 0.05 1000 955.172 925.231 900.285 878.156	set Node 875 x: 0.091392 y: 0.0564499 1000 957.066 927.613 902.725 880.555	Description Tempel This chart show 0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	rature changes	s in time	01:00:1

- At this moment, the first version of CLUSTERIX middleware is alraedy available
- Intensive testing of middleware modules and their interactions
- First experiences with running application in CLUSTERIX environment
- Demo at SC'05
- Extremely important for us:
 - to attract perspective users with new applications
 - to involve new dynamic clusters
 - training activities

Thank YOU !


www: https://clusterix.pl

Roman Wyrzykowski roman@icis.pcz.pl

Norbert Meyer meyer@man.poznan.pl

